Модуль смешивания и полива Модель: SmartWAS-WiFi-24V-01

Описание

Блок предназначен для использования в автоматизированных системах полива автоматизированных теплиц для сбора информации с датчиков (pH, TDS, датчик температуры, датчики уровня) и передачи команд от основного контроллера к реле, работающим по протоколу MQTT.

Блок обеспечивает передачу данных по беспроводному каналу связи Wi-Fi 2.4 ГГц. Блок обеспечивает передачу данных по протоколу MQTT. Конфигурация блока осуществляется через браузер.

Структурная схема подключения блока показана на рисунке 1.

Рисунок 1 – Структурная схема подключения блока

Блок использует следующие датчики:

- рН-зонд типа Е-201
- ЕС-зонд двухэлектродный;
- датчик температуры DS18B20;
- два датчика уровня герконовых.

Расположение разъемов приведено на рисунке 2

Рисунок 2 – Расположение разъемов блока

Для подключения датчиков (кроме pH) используются разъемы Connfly DS1110-01-4B6. Нумерация контактов разъема приведена на рисунке 3, а назначение контактов в таблицах 1-3.

Рисунок 3 – Нумерация контактов разъема

Для pH-зонда используется стандартный разъем типа BNC.

1	1 , ,
Номер контакта	Назначение
1	Электрод 1 зонда
2	Не используется
3	Не используется
4	Электрод 2 зонда

Таблица 1 Назначение контактов разъема ЕС-зонда

Таблица 2 Назначение контактов разъема датчика температуры

Номер контакта	Назначение
1	Питание, VCC
2	Вывод данных DATA (однопроводной интерфейс)
3	Не используется
4	Земля, GND

Таблица 3 Назначение контактов разъемов датчиков уровня

Номер контакта	Назначение
1	Bход 1 (GND)
2	Вход 2
3	Не используется
4	Не используется

Технические характеристики

Таблица 4 – Технические характеристики

N⁰	Параметр	Значение	Примечание
1	Диапазон измерения рН, ед.рН	0-14	
2	Разрешение, ед.рН	0.01	
3	Погрешность измерения, ед.рН	± 0.05	
4	Диапазон измерения	0-1350	
	электропроводности, ppm		
5	Разрешение измерения	1	
	электропроводности, ppm		
6	Погрешность измерения	± 2	
	электропроводности, %		
7	Диапазон измерения температуры,	-20 - 60	
	°C		
8	Разрешение измерения	0.1	
	температуры, °С		
9	Погрешность измерения	± 1	
	температуры, °С		
10	Напряжение питания, В	10-26	Имеется встроенная
			защита от
			перенапряжения

11	Ток потребления, не более, мА	60	Зависит от режима
			работы
12	Интерфейс	Wi-Fi, 2.4ГГц	
13	Дальность от точки доступа для	300	На открытом
	устойчивой передачи, не менее, м		пространстве
14	Диапазон рабочих температур, °С	0 - 40	

Габаритные размеры

Блок поставляется с кабелем питания. Длина кабеля – стандартно 2м, по запросу – до 20 м.

Распиновка кабеля:

Цвет проводника	Назначение
Белый или коричневый	+Uпит
Голубой	0 (Земля)

! Выключите источник питания перед подключением блока. Блок имеет защиту от переполюсовки питания.

Габаритные размеры корпуса: 145хх67х55мм

Материал корпуса – ABS пластик.

Рисунок 4 – Чертеж корпуса блока

Настройка блока

После подключения блок необходимо настроить на нужную сеть и MQTT брокер. Первоначально при включении блок пытается найти сеть и если у него не получается, то блок создает точку доступа, через которую становиться доступен интерфейс для настройки.

Первоначальная настройка блока

Подключите блока к питанию. Включите компьютер или смартфон.

Блок включится и в течении 5-10с активирует точку доступа. На компьютере или смартфоне найдите точку доступа с названием вида: SmartWAS-APxxxxx, где xxxxxx – уникальный цифро-буквенный код блока. Подключитесь к данной точке доступа, пароль: Smart2021.

После подключения откройте браузер и в строке введите IP-адрес: 192.168.6.1.

После ввода вам откроется страница настройки блока, рисунок 5. На странице необходимо настроить следующие параметры:

Поле «Имя Wi-Fi сети» - введите название сети к которой подключается датчик

Поле «Пароль Wi-Fi сети» - введите пароль сети к которой подключается датчик

Поле «MQTT_SERVER» - введите название MQTT-сервера (брокера), через который будет работать датчик

Поле «MQTT_PORT» - введите номер порта MQTT-сервера

Поле «MQTT_USER» - введите имя пользователя на MQTT-сервере

Поле «MQTT_PASSWORD» - введите пароль для доступа на MQTT-сервер

Поле «MQTT_CLIENT_NAME» - введите имя клиента для MQTT-сервера

Поле «Topic for PH data» - введите название топика для данных датчика pH на MQTT-сервере, например, «SENSOR/PH»

Поле «Topic for EC data» - введите название топика на MQTT-сервере для данных датчика EC/TDS, например, «SENSOR/EC».

Поле «Topic for temperature data» - введите название топика на MQTT-сервере для данных датчика температуры воды, например, «SENSOR/WATER_T».

Поле «Topic for upper water level sensor» - введите название топика на MQTTсервере для данных верхнего датчика уровня, «SENSOR/LVLU».

Поле «Topic for bottom water level sensor» - введите название топика на MQTTсервере для данных нижнего датчика уровня, «SENSOR/LVLD».

Поле «Topic for system data» - введите название топика на MQTT-сервере для отображения данных о времени работы блока, «SENSOR/was_lifetime».

Поле «Префикс для топиков реле» - введите названия начальной части топика для реле. Базовые топики для всех 6-ти реле сгенерятся автоматически и отображаются в полях ниже (без CMD и STAT). Для каждого реле отображаются 2 полных топика, например:

SONOFF/IRRIGATORSW/CMD – поле топика команды

SONOFF/IRRIGATORSW/STAT – поле топика статуса

После топиков реле идет секция параметров брокера, только для чтения. Данные параметры нужны для настройки соответствующих разделов страницы настройки реле.

Поле «Пользовательский номер устройства» - введите если необходимо свое обозначение датчика. Данный параметр не влияет на работу датчика и служит только для индикации номера при настройке для пользователя.

Поля MAC-адрес и серийный номер уникальны для каждого датчика и служат для его идентификации.

Поле «Длительность цикла опроса датчика, мс» - введите требуемое время, через которое датчик будет передавать данные. Время вводится в мс (5000 соответствует 5 секундам).

Дальнейшие поля служат для калибровки датчиков и устанавливаются производителем. Менять их не рекомендуется.

Имя Wi-Fi сети GreenHouse Пароль Wi-Fi сети 12345678 MQTT_SERVER 192.168.4.1 MQTT_PORT 1883 MQTT_USER guest MQTT_PASSWORD guest MQTT_CLIENT_NAME SWASCLIENT Topic for PH data SENSOR/PH Topic for EC data SENSOR/EC Topic for Temperature data

SENSOR/WATER_T Topic for upper water level sensor

SENSOR/LVLU

Topic for bottom water level sensor SENSOR/LVLD

Topic for System Data greenhouse1/was_lifetime

Префикс для топиков реле SONOFF/

Базовый топик реле для управления по EC (без CMD и STAT) SONOFF/ECSW/

Базовый топик реле подкисления (без CMD и STAT) SONOFF/ACIDIFSW/

Базовый топик реле подщелачивания (6e3 CMD и STAT) SONOFF/ALKASW/

194, 105,0,1

Базовый топик реле полива (без CMD и STAT) SONOFF/IRRIGATORSW/

Базовый топик реле насоса подкачки (без CMD и STAT) SONOFF/PUMPSW/

Базовый топик реле смешивания (без CMD и STAT) SONOFF/MIXERSW/

Параметры внутреннего MQTT-6рокера:

Имя точки доступа: SmartWAS-APE0E2E6

IP-адрес брокера: 192.168.6.1

Порт: 1883

USER: SWASMQTT

Пароль: 9e52mkd41W

Пользовательский номер устройства: SWA-YYWW-XXXXXX

MAC-адрес устройства: E0:E2:E6:87:6D:EC

Серийный номер устройства: SWA-2132-000001

Длительность цикла опроса, мс 3000

PH_Offset 0.00

PH probe maximum voltage 1.30

EC offset 0.00

EC probe maximum voltage 2.50

DC --- like

Le callor
1.07
Temperature Offset
0.00
Опорное напряжение АЦП, мВ 1128
Значение АЦП канала РН 1987
Пересчитанное входное напряжение канала РН, мВ 715.00
Калибровочный коэффициент канала РН 10.77
Значение РН 7.70
Значение АЦП канала ЕС 0
Пересчитанное входное напряжение канала EC, мВ 142.00
Калибровочный коэффициент канала ЕС 1.07
Значение ЕС 62.58
Показания датчика температуры 27.31
Показания верхнего датчика уровня 0
Показания нижнего датчика уровня 1
Сохранить Перезагрузить

Рисунок 5 – Страница настройки блока

После настройки датчика нажмите кнопку «Сохранить». Выключите блок.

Затем включите свою сеть Wi-Fi, на которую был настроен блок. После этого включите блок, он должен подключиться к данной сети и начать передавать данные.

Для проверки правильности настройки можно использовать бесплатную программу MQTT Explorer <u>http://mqtt-explorer.com/</u>

При правильной настройке вы должны увидеть соответствующие топики и данные в программе.

Далее произведите настройку клиентского программного обеспечения.

Гарантия изготовителя и поддержка

Гарантийный срок работы – 1 год.

Поддержка: <u>support@smart-program.ru</u>

Изготовитель: ООО «Смарт-Програм», 124536, г. Москва, г. Зеленоград, ул. Юности, д. 8, этаж 10 помещ./часть ком. XII/15

Сделано в России

Не требует обязательной сертификации