Контроль параметров питательного раствора с модулем SmartWAS-WiFi

Георгий Прокофьев, ООО «Смарт-Програм», prokofiev@smart-program.ru

Для успешного выращивания растений методом гидропоники важно контролировать и поддерживать параметры питательного раствора в требуемых пределах. К важнейшим параметрам относятся:

- электропроводность;

- кислотность;
- температура.

Также необходимо контролировать уровень питательного раствора в резервуаре, для обеспечения автоматической подкачки. Хотя последнее может быть реализовано и без какой-либо электроники иметь независимый удалённый контроль всегда полезно.

Модуль смешивания и полива представляет собой систему 5 в 1, обеспечивающую получение, преобразование и передачу данных через Wi-Fi показаний с зонда электропроводности, кислотности, датчика температуры и двух датчиков уровня. Блок использует следующие датчики:

- рН-зонд типа E-201 (стеклянный, хлорсеребряный, с разъемом BNC);

- ЕС-зонд двухэлектродный;

- датчик температуры DS18B20;

- два датчика уровня герконовых, работают на замыкание.

Фотография модуля смешивания и полива приведена на рисунке 1.

Рисунок 1 – Модуль смешивания и полива

Модуль требует питание постоянным током напряжением 10-26В. Модуль имеет защиту от переполюсовки питания и перенапряжения.

Интерфейс модуля беспроводной, Wi-Fi. Как и вся инфраструктура автоматизации ООО «Смарт-Програм» в качестве транспортного протокола для показаний датчиков используется протокол MQTT. Модуль может работать как в виде отдельного узла автоматизации с независимым подключением к удаленному серверу, так и как элемент автоматизированной системы с центральным контроллером GHSC1. Во втором случае помимо считывания показаний с датчиков через модуль обеспечивается также управление исполнительными реле полива и смешивания раствора.

Габаритные размеры модуля составляют 145х66.36х55 мм. Модуль поставляется с кабелем длиной от 2 до 20м.

При включении модуля необходимо провести его настройку. Настройка осуществляется через браузер. После включения питания блок пытается подключится к сети Wi-Fi, и в случае неудачи по истечении времени ~10с включает точку доступа с именем SmartWAS-APxxxxxx, где xxxxxx – уникальный цифро-буквенный код модуля, рисунок 2.

Рисунок 2 – Точка доступа модуля SmartWAS

Необходимо выбрать данную точку доступа и подключиться к ней (пароль Smart2021). После подключения откройте браузер и в строке введите IP-адрес: 192.168.6.1. После ввода откроется страница настройки блока, рисунок 3.

Страница настройки включает следующие параметры:

Поля «Имя Wi-Fi сети» и «Пароль Wi-Fi сети» - название и пароль Wi-Fi сети к которой подключается модуль.

Поля «MQTT_SERVER», «MQTT_PORT», «MQTT_USER», «MQTT_PASSWORD», «MQTT_CLIENT_NAME» - вводим название MQTT-сервера (брокера), через который будет работать модуль.

Поле «Topic for PH data» - вводим название MQTT-топика для данных датчика pH на MQTT-сервере, например, «SENSOR/PH»

Поле «Topic for EC data» - вводим название MQTT-топика для данных датчика EC/TDS, например, «SENSOR/EC».

Поле «Topic for temperature data» - в вводим название MQTT-топика для данных датчика температуры воды, например, «SENSOR/WATER_T».

Поле «Topic for upper water level sensor» - вводим название MQTT-топика для данных верхнего датчика уровня, «SENSOR/LVLU».

Поле «Topic for bottom water level sensor» - вводим название MQTT-топика для данных нижнего датчика уровня, «SENSOR/LVLD».

Поле «Topic for system data» - вводим название MQTT-топика для отображения данных о времени работы блока, «SENSOR/was_lifetime».

Основные параметры для работы в качестве модуля датчиков питательного раствора настроены.

Рассмотрим дополнительные параметры, используемые при работе с контроллером GHSC1. В такой конфигурации модуль работает как в режиме станции, так и в режиме точки доступа, создавая свою сеть для исполнительных реле. Программное обеспечение модуля включает встроенный MQTT-брокер, с помощью которого осуществляется обмен между контроллером и исполнительными реле. Модуль управляет 6-ю реле:

- реле управления по датчику электропроводности;

- реле подкисления;
- реле подщелачивания;
- реле полива;
- реле включения насоса подкачки;
- реле смешивания.

Все реле имеют одинаковые базовые MQTT-топики и начальное название, задаваемое в поле «Префикс для топиков реле». Базовые топики для всех 6-ти реле сгенерятся автоматически и отображаются в полях ниже (без CMD и STAT). Для каждого реле таким образом получится 2 полных топика, например:

SONOFF/IRRIGATORSW/CMD – топик команды;

SONOFF/IRRIGATORSW/STAT – топик статуса.

После топиков реле идет секция параметров брокера, только для чтения. Данные параметры нужны для настройки соответствующих полей страницы настройки реле.

Поле «Пользовательский номер устройства» - вводим если необходимо свое обозначение датчика. Данный параметр не влияет на работу датчика и служит только для индикации номера при настройке для пользователя.

Поля MAC-адрес и серийный номер уникальны для каждого датчика и служат для его идентификации.

Поле «Длительность цикла опроса датчика, мс» - вводим требуемое время, через которое датчик будет передавать данные. Время вводится в мс (5000 соответствует 5 секундам).

Дальнейшие поля служат для калибровки датчиков и устанавливаются производителем. Менять их не рекомендуется.

Имя Wi-Fi сети GreenHouse Пароль Wi-Fi сети 12345678 MQTT_SERVER 192.168.4.1 MQTT_PORT 1883 MQTT_USER guest MQTT_PASSWORD guest MQTT_CLIENT_NAME SWASCLIENT Topic for PH data SENSOR/PH Topic for EC data SENSOR/EC Topic for Temperature data SENSOR/WATER_T Topic for upper water level sensor SENSOR/LVLU Topic for bottom water level sensor SENSOR/LVLD Topic for System Data greenhouse1/was_lifetime

Префикс для топиков реле SONOFF/

Базовый топик реле для управления по EC (без CMD и STAT) SONOFF/ECSW/

Базовый топик реле подкисления (без CMD и STAT) SONOFF/ACIDIFSW/

Базовый топик реле подщелачивания (6e3 CMD и STAT) SONOFF/ALKASW/

Базовый топик реле полива (без CMD и STAT) SONOFF/IRRIGATORSW/

Базовый топик реле насоса подкачки (без CMD и STAT) SONOFF/PUMPSW/

Базовый топик реле смешивания (без CMD и STAT) SONOFF/MIXERSW/

Параметры внутреннего MQTT-6рокера:

Имя точки доступа: SmartWAS-APE0E2E6

IP-адрес брокера: 192.168.6.1

Порт: 1883

USER: SWASMQTT

Пароль: 9e52mkd41W

Пользовательский номер устройства: SWA-YYWW-XXXXXX

MAC-адрес устройства: E0:E2:E6:87:6D:EC

Серийный номер устройства: SWA-2132-000001

Длительность цикла опроса, мс 3000

PH_Offset 0.00

PH probe maximum voltage 1.30

EC offset 0.00

EC probe maximum voltage 2.50

EC ashbr

De calor	
1.07	
Temperature Offset	
0.00	
Опорное напряжение АЦП, мВ 1128	
Значение АЦП канала РН 1987	
Пересчитанное входное напряжение канала PH, м 715.00	B
Калибровочный юэффициент канала PH 10.77	
Значение РН 7.70	
Зн <i>а</i> чение АЦП канала ЕС 0	
Пересчитанное входное напряжение канала EC, м 142.00	B
Калибровочный коэффициент канала EC 1.07	
Значение ЕС 62.58	
Показания датчика температуры 27.31	
Показания верхнего датчика уровня 0	
Показания нижнего датчика уровня 1	
Сохранить Перезагрузить	

Рисунок 3 - Страница настройки блока

После настройки датчика нажмите кнопку «Сохранить». Затем нажмите кнопку «Перезагрузить».

Правильность настройки модуля можно проверить бесплатной программой MQTT Explorer. После подключения к удаленному MQTT-брокеру мы увидим топики с модуля, рисунок 4.

Далее в Node-RED настроим считывание данных с брокера и сохранение в базу данных InfluxDB, рисунок 5.

Рисунок 5 – Настройка считывания и сохранения данных с модуля в Node-RED

После чего мы сможем отображать данные с датчиков в Grafana, рисунок 6.

Рисунок 6 – Отображение данных в Grafana

Из Node-RED или любой другой программы осуществляющей работу с протоколом MQTT может быть реализовано управление исполнительными реле модуля. Для этого необходимо обеспечить передачу MQTT-топика команды xxxxx/CMD (например, SONOFF/IRRIGATORSW/CMD) и подписку на топик состояния реле xxxxx/STAT (например, SONOFF/IRRIGATORSW/STAT).

Заключение

В данной статье мы рассмотрели модуль смешивания и полива SmartWAS-WiFi разработки ООО «Смарт-Програм. Благодаря интеграции нескольких датчиков в один и беспроводному интерфейсу с открытым протоколом MQTT модуль, а также наличию нескольких управляемых реле, модуль может решать ряд задач по контролю и автоматизации питательного раствора в гидропонике.

Детальная информация о технических характеристиках модуля и его настройке приведена в соответствующем описании.

На рисунке 7 показан пример использования модуля для онлайн-мониторинга параметров раствора офисной гидропонной установки.

Рисунок 7 – Пример использования модуля для контроля раствора офисной мини-теплицы

Литература

- 1. Электронный pecypc <u>http://www.green-cub.ru/avtomatization/</u>
- 2. Описание: Модуль смешивания и полива. Модель: SmartWAS-WiFi-24V-01

ООО «Смарт-Програм», ИНН 7735191058, ОГРН 1217700207240 124536, Россия, г. Москва, г. Зеленоград, улица Юности, дом 8 e-mail: <u>info@smart-program.ru</u>

www.green-cub.ru www.smart-program.ru